Bridging the Gap Between Field Trips and the Classroom

2012 CASC Annual Conference
Josée Lebel

This workshop’s purpose is to demystify the types of resources teachers are looking for when bringing their students to a science centre. The ideal resources permit the teacher to seamlessly connect the content being taught in the classroom to what the students will be experiencing on their field trip.

Find out the teacher’s perspective

A teacher always has a reason for taking the time and effort to organize a field trip. Find out (in an evaluation) why the teacher chose to come to your science centre today – what topic were they trying to cover?

Choose the most popular curriculum connection and cover it completely (pre-, during, and post-).

It's not necessary to do an overhaul of all of your worksheets at once. Start with the grade levels that your organization targets very well.

How much to give teachers

1. One complete pre-visit lesson
 - backgrounder
 - hook
 - leading questions
 - PowerPoint presentation (if possible) rich in media
 - hands-on activity
 - evaluation rubric
 - connection to field trip (what are they going to learn at your centre?)
 - PLO-related challenge to be investigated on field trip

2. One post-visit lesson
 - debriefs what they learned in the science centre
 - provides thought-provoking questions
 - applies of the information gleaned from field trip to the challenge assignment

3. Student-centred orientation
 One of the best ways to decrease behavioural issues at the beginning of a field trip is to reduce the novelty effect. Preparing students ahead of time will help them stay focused on the day of the field trip.
 - Prepare a PowerPoint presentation that includes a physical map/website of the galleries/layout. (option: teacher may ask students to choose areas they would like to explore and why).
 - Itinerary: Meeting places and times. Pickup and dropoff (or bus schedule, estimated travel time, and route) information.
 - Discuss food options, what they can buy, where the washrooms are, role of the science interpreters.
Find out who has been to the field trip destination in the past – if they are members, make them de facto leaders.

Send map, website, and/or itinerary to the students by email (they’ll be able to retrieve it via their smartphone).

Go over etiquette and behavioural expectations.

4. Chaperone information package

- itinerary
- expectations of the students
- student information (medical, parent contact info, your cell phone number)
- expectation of the them: examples of guiding questions (What happens if…? Have you ever seen anything like that before? What does it remind you of? What have you been learning in class? What do you think that’s for? How does this work? How could we test that?).

All of these documents should be included in the confirmation email to the teacher.

Challenge Design

Create a challenge that will be completed post-field trip but that will use the information gathered from the field trip. Keep the content focused – do not try to cover too much. Give the challenge/topic ahead of time. Give students the perception of free-choice learning (choose 3-4 exhibits/activities among a larger thematic exhibition).

Hand out “question books” or “expedition booklets” to record further questions and/or to guide inquiry. Hand out cameras or ask students to use their smartphones.

a) Photographic exhibition with labels

Topics can be chosen ahead of time based on questions. Limit the number of pictures to be taken by giving the task to the chaperone. Students must justify their choices among their peers. Take a picture of the team. Individual team members pose with the exhibition content. Limit the amount of text for labels (encourages them to be concise). Can be a physical exhibition or an online version.

b) Expedition model (see Liberty Science Center Discovery Challenges)

- use information gained on field trip to solve a challenge
- students choose 3-4 stations out of a larger set (jigsaw)
- each station invites student to reflect on how the information applies to the challenge
 - debate
 - propose
 - build
 - solve
 - create
 - invent

c) Exhibition model (see Vancouver Aquarium lesson plans)

- based on students’ interests throughout the unit
- collect information to support their exhibits
- rubric scaffolds the exploration while giving students choices
 - newsletter going out to parents and school
 - video
 - self-guided tour
 - narrative
 - presentation
 - role-playing
 - performance
 - interview
 - wanted poster
 - create
 - apply to a new situation
 - science careers
 - build your own exhibit
 - interview your science facilitator
 - photojournalism
 - argue
Worksheets

A well-designed worksheet allows students to discuss and compare. It asks students to use observation, inference, prediction skills based on prior knowledge and new connections.

If using a worksheet, make it concept-focused rather than content-focused. Use open-ended questions (Which organisms – plant or animal – are best suited to their environment? What could be some advantages and disadvantages of being such a bright-coloured fish?). Invite inquiry, investigation, exploration, connection, hypothesis, generalization.

Processes of Science Skills

If the field trip is loosely tied to the curriculum, highlight the use of processes of science (approach each exhibit using the scientific method – what did you do? what was your control? how many times did you repeat the experiment?).

<table>
<thead>
<tr>
<th>Acquisitive</th>
<th>Organizational</th>
<th>Creative</th>
<th>Manipulative</th>
<th>Communicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>listening</td>
<td>recording</td>
<td>planning ahead</td>
<td>using instruments</td>
<td>questioning</td>
</tr>
<tr>
<td>observing</td>
<td>comparing</td>
<td>designing</td>
<td>demonstrating</td>
<td>discussing</td>
</tr>
<tr>
<td>searching</td>
<td>contrasting</td>
<td>inventing</td>
<td>experimenting</td>
<td>explaining</td>
</tr>
<tr>
<td>inquiring</td>
<td>classifying</td>
<td>synthesizing</td>
<td>constructing</td>
<td>reporting</td>
</tr>
<tr>
<td>investigating</td>
<td>organizing</td>
<td></td>
<td>calibrating</td>
<td>writing</td>
</tr>
<tr>
<td>gathering data</td>
<td>outlining</td>
<td></td>
<td></td>
<td>criticizing</td>
</tr>
<tr>
<td>researching</td>
<td>reviewing</td>
<td></td>
<td></td>
<td>graphing</td>
</tr>
<tr>
<td></td>
<td>evaluating</td>
<td></td>
<td></td>
<td>teaching</td>
</tr>
<tr>
<td></td>
<td>analyzing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References and Resources

DeFina, Anthony V. *Building Science Process Skills* in The Science Teacher. 73 no1 Ja 2006 pages 36-41.

Vancouver Aquarium > Learn > Teachers > Lesson Plans (vanaqua.org)

Beyond the Blackboard Educational Consulting (beyondblackboard.ca)

Liberty Science Center > Education > Field Trips > Discovery Challenges (lsc.org)
Essential Features of Inquiry

Make connections
Generalize
Apply
State implications
Transfer to other situations

Generalization

Observe
Manipulate
Exploration
Wonder
Ask Questions

Exploration

Control variables
Collect data
Plan procedure
Gather evidence

Investigation

Draw conclusions
Summarize
Interpret data
Generate hypotheses
State theories

Explanation

Breakdown of Inquiry Emphases

<table>
<thead>
<tr>
<th>Formal Settings</th>
<th>Informal Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>Exploration</td>
</tr>
<tr>
<td>Investigation</td>
<td>Investigation</td>
</tr>
<tr>
<td>Explanation</td>
<td>Explanation</td>
</tr>
<tr>
<td>Generalization</td>
<td>Generalization</td>
</tr>
</tbody>
</table>

(reproduced from the Inquiry-based learning in informal learning environments workshop at the Vancouver Aquarium on October 22, 2010)
Essential Features of Classroom Inquiry and their Variations

<table>
<thead>
<tr>
<th>Essential Feature</th>
<th>What it could look like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learner engages in scientifically-oriented questions.</td>
<td>Learner asks a question.</td>
</tr>
<tr>
<td>Learner gives priority to evidence in responding to questions.</td>
<td>Learner determines what constitutes evidence and collects it.</td>
</tr>
<tr>
<td>Learner formulates explanations from evidence.</td>
<td>Learner formulates explanation after summarizing evidence.</td>
</tr>
<tr>
<td>Learner connects explanations to science knowledge.</td>
<td>Learner independently examines other resources and forms explanations.</td>
</tr>
<tr>
<td>Learner communicates and justifies proposed explanations.</td>
<td>Learner forms reasonable and logical argument to communicate explanations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More</th>
<th>Student self-direction</th>
<th>Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less</td>
<td>Direction from teacher/pedagogical materials</td>
<td>More</td>
</tr>
</tbody>
</table>

(reproduced from the *Inquiry-based learning in informal learning environments* workshop at the Vancouver Aquarium on October 22, 2011)